

Standard Spacecraft Interfaces and IP Network Architectures

June 5, 2003

Jane Marquart
Info Tech Specialist
301-286-7851
jane.k.marquart@nasa.gov

AGENDA

- Overview
- Objectives and Goals
- Prototype Software
- Prototype Hardware
- ◆ Summary So What!
- ◆ Future Work

Overview

- ◆ SOIF standardization of flight networks will enable interoperable space hardware components
 - * Reduces development and test costs
- Networks used on current missions (JWST, NPOES, SDO, GLAST) are not interoperable leading to duplication of effort
- ◆ GSFC Flight Ethernet Prototype, based on SOIF implementation model, will demonstrate benefits of an interoperable network
- Prototype will demonstrate Flight Ethernet, the baseline spacecraft bus for the GPM spacecraft

Objectives and Goals

- Long-term goal:
 - * Develop an onboard IP network for Ethernet using the SOIF implementation model
 - Concentration on Network Layer and Convergence Sub-Layer
- Prototype goals:
 - Verify Flight Ethernet NIC and Switch being developed by GSFC
 - Proof-of-concept of an IP/Ethernet spacecraft bus for GPM Mission

SOIF Implementation Model

Prototype in GPM Context

Prototype Software

- Network Bus application developed for interprocessor messaging (legacy software bus used for intra-processor messaging)
- Baseline UDP/IP
 - * TCP not used timeliness of reliability insufficient for mission critical, real-time applications
 - UDP enhanced by Fault-Tolerant messaging service in application layer - supports Network Bus
 - Standard IPv4 protocol stack used RTEMS Operating System has BSD stack

Prototype Software

- Integrate simple convergence sub-layer
 - Required for flight-level QoS such as reliability and schedule-driven communications
- Custom device driver for Flight Ethernet
 - Linux driver ported to RTEMS and customized for Flight Ethernet
 - Uses DMA for data transfer to/from NIC for better performance

Flight Ethernet Prototype

Prototype Hardware

- Switched full duplex topology
- ◆ Supports 10/100 Mbit Ethernet over twisted pair using a 12.5/125 Mbit DS Link encoded LVDS physical layer media converter connects Flight Ethernet to 10/100-base TX
- ◆ NIC
 - Standard MAC core
 - Custom LVDS physical layer interface
- Switch
 - ❖ 12 port, fixed MAC address table
 - Supports Broadcast and Pause

Network Interface Card

NASA

• NASA DATA SYSTEM STANDARDS PROGRAM •

• NASA DATA SYSTEM STANDARDS PROGRAM • Summary - So What!

- Effort to date has already shown cost savings
 - Commercially available network cards and standard device drivers enabled a quick testbed setup
 - ◆ Can be extended to development labs commercial NICs and switches in system breadboards and ground test equipment
 - Ethernet Protocol engine saved \$\$ in development of Flight Ethernet NIC
 - ♦ Standard MAC core
 - Use of existing standards and methods as templates for flight applications
- Missions have a low-cost, standard solution for high-speed onboard networks
- Missions have interoperable space hardware components

Future Work

- Convergence sub-layer has challenges
 - * QoS
 - ◆ Schedule-driven, isochronous communications
 - ♦ Reliability
 - Bandwidth management
 - * Portability between:
 - operating systems
 - ♦ different data links
- Support for 100Mbps Flight physical layer
- Additional functionality
 - ♦ 1553 Standard Data Link
 - * Time distribution
 - Standard Messaging Service

- 1. Interplanetary Internet: An Architectural Framework for Space Internetworking: Adrian Hooke
- 2. User Data Services for Internet Based Spacecraft Applications: Joe Smith
- 3. CCSDS File Delivery Protocol (CFDP): Tim Ray
- 4. Internet Protocol Based Standards for Spacecraft Onboard Interfaces: Joe Smith
- 5. Standard Spacecraft Interfaces and IP Network Architectures: Jane Marquart
- 6. Standard Transport and Network Capabilities: Bob Durst
- 7. Next Generation Space Internet: Standards and Implementation: Keith Scott
- 8. Secure Space Networking: Howie Weiss
- 9. Delay Tolerant Networking: Scott Burleigh
- 10. CCSDS Link Layer Protocol Suite: Greg Kazz